Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Two-dimensional (2D) transition metal dichalcogenides (TMDs) is a versatile class of quantum materials of interest to various fields including, e.g., nanoelectronics, optical devices, and topological and correlated quantum matter. Tailoring the electronic properties of TMDs is essential to their applications in many directions. Here, we report that a highly controllable and uniform on-chip 2D metallization process converts a class of atomically thin TMDs into robust superconductors, a property belonging to none of the starting materials. As examples, we demonstrate the introduction of superconductivity into a class of 2D air-sensitive topological TMDs, including monolayers of , , and , as well as their natural and twisted bilayers, metallized with an ultrathin layer of palladium. This class of TMDs is known to exhibit intriguing topological phases ranging from topological insulator, Weyl semimetal to fractional Chern insulator. The unique, high-quality two-dimensional metallization process is based on our recent findings of the long-distance, non-Fickian in-plane mass transport and chemistry in 2D that occur at relatively low temperatures and in devices fully encapsulated with inert insulating layers. Highly compatible with existing nanofabrication techniques for van der Waals stacks, our results offer a route to designing and engineering superconductivity and topological phases in a class of correlated 2D materials. Published by the American Physical Society2024more » « less
-
Optical spectroscopy of quantum materials at ultralow temperatures is rarely explored, yet it may provide critical characterizations of quantum phases not possible using other approaches. We describe the development of a novel experimental platform that enables optical spectroscopic studies, together with standard electronic transport, of materials at millikelvin temperatures inside a dilution refrigerator. The instrument is capable of measuring both bulk crystals and micrometer-sized two-dimensional van der Waals materials and devices. We demonstrate its performance by implementing photocurrent-based Fourier transform infrared spectroscopy on a monolayer WTe2 device and a multilayer 1T-TaS2 crystal, with a spectral range available from the near-infrared to the terahertz regime and in magnetic fields up to 5 T. In the far-infrared regime, we achieve spectroscopic measurements at a base temperature as low as ∼43 mK and a sample electron temperature of ∼450 mK. Possible experiments and potential future upgrades of this versatile instrumental platform are envisioned.more » « less
-
Abstract Interacting electrons in one dimension (1D) are governed by the Luttinger liquid (LL) theory in which excitations are fractionalized. Can a LL-like state emerge in a 2D system as a stable zero-temperature phase? This question is crucial in the study of non-Fermi liquids. A recent experiment identified twisted bilayer tungsten ditelluride (tWTe2) as a 2D host of LL-like physics at a few kelvins. Here we report evidence for a 2D anisotropic LL state down to 50 mK, spontaneously formed in tWTe2with a twist angle of ~ 3o. While the system is metallic-like and nearly isotropic above 2 K, a dramatically enhanced electronic anisotropy develops in the millikelvin regime. In the anisotropic phase, we observe characteristics of a 2D LL phase including a power-law across-wire conductance and a zero-bias dip in the along-wire differential resistance. Our results represent a step forward in the search for stable LL physics beyond 1D.more » « less
An official website of the United States government
